
SYMPLECTIC QUOTIENTS: MOMENT MAPS, SYMPLECTIC

REDUCTION AND THE MARSDEN-WEINSTEIN-MEYER THEOREM

VICTORIA HOSKINS

1. Construction of group quotients in differential geometry

Let X be a smooth manifold and K be a Lie group; then an action of K on X is an action
σ : K ×X → X which is smooth map of manifolds such that σk : X → X is a diffeomorphism
for all k ∈ K. Let K · x denote the orbit of x ∈ X and Kx denote the stabiliser of x. The
topological quotient is the orbit space

X/K = {K · x : x ∈ X},

which is given the quotient topology, so that the morphism π : X → X/K is continuous. In
general, this topological quotient need not be a manifold.

Example 1.1.

(1) Let S1 act on S2 by rotation so that the North and South pole are the only fixed points
of this action; then the topological quotient is homeomorphic to the closed interval [0, 1],
which is not a manifold, as it has corners. In this example, the boundary points arise
as the action is not free.

(2) Let R act on T 2 = S1 × S1 by translation by an irrational slope ω1/ω2. More precisely,
if we consider T 2 as obtained from the square [0, 1]2 by gluing opposite edges, then the
lift of this action to [0, 1]2 is given by

t · (a, b) = (a+ ω1t, b+ ω2t).

In this example, the orbit space is not Hausdorff due to the presence of dense orbits.
This is a phenomena of non-proper actions.

Remark 1.2.

(1) If K acts properly on X (that is, the graph of the action K × X → X × X given
by (k, x) 7→ (k · x, x) is proper), then all orbits are closed and the quotient X/K is
Hausdorff.

(2) If K is compact, then any action of K on X is proper.

Theorem 1.3. Let K be a Lie group acting freely and properly on a smooth manifold X;
then there is a unique structure of a smooth manifold on X/K such that π : X → X/K is a
submersion. Furthermore, π : X → X/K is a principal K-bundle.

Proof. We give an outline of the main steps in the proof.
Step 1: each orbit K · x is a closed embedded submanifold diffeomorphic to K. Consider the

action map σx : K → X given by k 7→ k · x; this is a smooth (as σ is smooth), proper (as K is
compact), injective (as the action is free) morphism with image K · x. We claim that σx is an
immersion. Up to the action of K, it suffices to check that deσx : k→ TxX is injective, where k
denotes the Lie algebra of K. We see that deσx(A) = 0 for A ∈ k if and only if the infinitesimal
action of A on x is trivial, but, as the action is free, this holds if and only if A = 0.

Step 2: the Slice theorem. For a free action of K on X, a slice of the action at x ∈ X is an
open neighbourhood S ⊂ X of x such that the action K × S → K · S gives a K-equivariant
diffeomorphism. In our set up of a free and proper action, we can use the Slice theorem of
Palais to construct slices of the action at every point in X and, in Step 3, we use these slice to
provide charts on X/K.
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To construct a slice of the action at x ∈ X, we choose a decomposition

TxX = Tx(K · x)⊕W
such that W is normal to the orbit. Following Step 1, we produce a transverse section S to
the orbit K · x by taking a sufficiently small ball D ⊂ W such S is the image of D under the
diffeomorphism

Φ : {neighbourhoods of 0 ∈ TxX} −→ {neighbourhoods of x ∈ X}.
For ε > 0, we let Sε := S ∩ Φ(Bε(0)). The Slice theorem states that for ε sufficiently small,
the map ηε : K × Sε → X given by (k, s) 7→ k · s is a diffeomorphism onto a K-invariant
neighbourhood of K ·x. For any ε > 0, one verifies that d(e,x)ηε is bijective; that is, ηε is a local
diffeomorphism at (e, x) and, using the K-action, we deduce that dηε is a local diffeomorphism
at (k, x) for all k ∈ K. We claim that for ε sufficiently small, ηε is injective. To prove this we
argue by contradiction: otherwise there are sequences xn → x and x′n → x in X and gn, hn ∈ K
such that (gn, xn) 6= (hn, x

′
n) and

gn · xn = hn · x′n.
Let kn := h−1

n gn; then kn ·xn = x′n → x. Consider the graph of the action Γ : K×X → X ×X;
then Γ(kn, xn) = (kn · xn, xn) = (x′n, xn), which converges to (x, x). As the action is proper,
there is a convergent subsequence knj → k. However, such a convergent subsequence contradicts
the fact that ηε is a local diffeomorphism at (k, x). Hence, for ε sufficiently small, ηε is injective,
and provides a diffeomorphism from a neighbourhood K × Sε of K × {x} in K × X onto a
neighbourhood U of η(K × {x}) = K · x in X. This completes the proof of the Slice theorem.

Step 3: The construction of charts via the slice theorem. Let π : X → X/K and p = π(x)
for some x ∈ X. We use the slice theorem to provide a chart at p ∈ X/K. Let S be a slice
at x ∈ X; then S is a smooth open neighbourhood of x ∈ X and we have a diffeomorphism
K × S ∼= U := K · S. Hence,

π(U) = U/K ∼= (K × S)/K ∼= S

is an open neighbourhood of p = π(x) ∈ X/K and we can use the smooth structure on S to
define a smooth structure locally on X/K. We leave it as an exercise to check that the transition
functions and π are smooth. By construction of these charts, we see that π : X → X/K is a
principal K-bundle. �

2. Actions in symplectic geometry

Let (X,ω) be a symplectic manifold; that is, X is a (real) smooth manifold and ω is a closed
non-degenerate 2-form on X, called the symplectic form. We can think of ω as a family of
skew-symmetric non-degenerate bilinear forms

ωx : TxX × TxX → R.
The non-degeneracy of ω implies that dimRX is even and ω induces isomorphisms TxX ∼= TxX

∗,
which vary smoothly with x ∈ X. In particular, the symplectic form determines an isomorphism
TX ∼= T ∗X.

Definition 2.1. Let K be a lie group and σ : K × X → X be a smooth action. We say the
action is symplectic if K acts by symplectomorphisms; that is, σ∗kω = ω for all k ∈ K.

Hence, for a symplectic action, the action K → Diff(X) factors through the subgroup of
symplectomorphisms Sympl(X,ω).

Our goal is to provide a method for constructing quotients of such actions in symplectic
geometry; in the sense, that the quotient is also a symplectic manifold. Even if a symplectic
K-action on (X,ω) admits a smooth quotient X/K, this quotient may not be symplectic purely
for dimension reasons (for example, if K has odd dimension, then so does X/K and so the
quotient cannot be symplectic). Instead, we will construct a quotient with expected dimension
dimX − 2 dimK, by using a moment map for the action to construct a symplectic reduction.
The moment map for the action can be thought of as a lift of an infinitesimal version of the
action.
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2.1. Infinitesimal action. The Lie algebra k = TeK is an infinitesimal version of the Lie group
K. We can construct an infinitesimal version of the action by associating to each A ∈ k, a vector
field AX on X as follows: at x ∈ X, we have

AX,x :=
d

dt
exp(tA) · x|t=0 ∈ TxX.

We denote the (infinite dimensional) Lie algebra of smooth vector fields on X by Vect(X) :=
Γ(TX), where the Lie bracket [−,−] on Vect(X) is given by the commutator. The infinitesimal
action

σinf : k→ Vect(X), A 7→ AX
is a Lie algebra anti-homomorphism (the fact that this is an anti-homomorphism is explained
by the sign which occurs when going between left and right actions: the Lie bracket on k is
defined using left-invariant vector fields, which are generating vector fields for the right action
of the group on itself, whereas the action of K on X is a left action).

The symplectic form ω determines an isomorphism TX ∼= T ∗X and, on taking global sections,
we obtain an isomorphism

Vect(X) ∼= Ω1(X) := Γ(T ∗X).

The exterior derivative d : C∞(X)→ Ω1(X) together with this isomorphism determine a map

Φω : C∞(X)→ Ω1(X) ∼= Vect(X), f 7→ Yf .

We can define a Lie algebra structure on C∞(X) using ω by

{f, g} := ω(Yf , Yg)

where Yf = Φω(f). Then Φω is a Lie algebra anti-homomorphism; that is,

Φω({f, g}) = −[Yf , Yg].

Definition 2.2. A vector field on a symplectic manifold (X,ω) is Hamiltonian if it lies in the
image of Φω (that is, the corresponding 1-form is exact). A vector field is symplectic if the
corresponding 1-form is closed.

As exact forms are closed, every Hamiltonian vector field is a symplectic vector field.

Definition 2.3. Let K be a Lie group acting on a symplectic manifold (X,ω). The action is

i) infinitesimally symplectic if AX is a symplectic vector field for all A ∈ k.
ii) weakly Hamiltonian if AX is a Hamiltonian vector field for all A ∈ k.

For a weakly Hamiltonian action, the infinitesimal action k→ Vect(X) can be pointwise lifted
to a map k→ C∞(X), because a Hamiltonian vector field corresponds (under ω) to the exterior
derivative of a smooth function on X. In general, this lift is non-unique as there may be several
smooth functions with the same exterior derivative.

Definition 2.4. A symplectic action of a Lie group K on (X,ω) is Hamiltonian if the infinites-
imal action σinf : k → Vect(X) can be lifted to a Lie algebra homomorphism µ∗ : k → C∞(X),
called the comoment map, such that the following diagram commutes

C∞(X)

Φω
��

k σinf
//

µ∗
;;

Vect(X).

2.2. Moment map. Hamiltonian actions can also be described by using a moment (or mo-
mentum) map, which one should think of as dual to a comoment map.

Definition 2.5. A smooth map µ : X → k∗ is called a moment map if it is K-equivariant with
respect to the action of the given K on X and the coadjoint action of K on k∗, and µ satisfies
the following infinitesimal lifting property:

(1) dxµ(ζ) ·A = ωx(AX,x, ζ)

for all x ∈ X, ζ ∈ TxX and A ∈ k.
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Remark 2.6.

(1) For µ : X → k∗ and A ∈ k∗, if we let µA : X → R denote the function x 7→ µ(x) ·A, then
the infinitesimal lifting property can be stated as dµA = ιAXω for all A ∈ k∗, where ιAω
denotes the 1-form obtained by contracting the 2-form ω with the vector field AX .

(2) The momentum map first arose in classical mechanics; we give some simple examples
of moment maps arising from physical actions in Example 2.8 below. For a detailed
description of the moment map from the viewpoint of classical mechanics, see the notes
of Butterfield [1].

(3) There is still no consistent sign convention for the moment map and so often a minus
sign may appear in the condition (1) used to define a moment map.

For K connected, we claim that there is a bijective correspondence

{µ : X → k∗ moment maps} ←→ {µ∗ : k→ C∞(X) comoment maps}
given by µ 7→ µ∗ where µ∗(A)(x) := µ(x) · A. It is clear that the infinitesimal lifting property
of µ given by (1) corresponds to the factorisation property ϕω ◦ µ∗ = σinf . Let us explain
how K-equivariance of µ corresponds to the property that µ∗ is a Lie algebra homomorphism.
Suppose we have a moment map µ; then by K-equivariance of µ, we have

µ(k · x) ·A = (Ad∗kµ(x)) ·A = µ(x) ·Adk−1(A)

for all k ∈ K, x ∈ X and A ∈ k. For A,B ∈ k, we then have

0 =
d

dt
µ(exp(tB) · x) ·A− µ(x) ·Adexp(−tB)(A) |t=0

= dxµ(BX,x) ·A− µ(x) · [−B,A]

= ωx(AX,x, BX,x)− µ(x) · [A,B]

= {µ∗(A), µ∗(B)}(x)− µ∗([A,B])(x),

which proves that µ∗ is an Lie algebra homomorphism. Conversely, if we know that µ∗ is a Lie
algebra homomorphism and we want to prove that µ is K-equivariant, it suffices to prove that
for all x ∈ X and A ∈ k∗ that the map ϕx,A : K → R given by ϕx,A(k) := µ(k · x) · Adk(A) is
constant. As K is connected, it suffices to prove that the derivative of ϕx,A is trivial and, by
using the K-action, we can reduce to checking only deϕx,A = 0. We see that

deϕx,A(B) =
d

dt
µ(exp(tB) · x) ·Adexp(tB)(A)|t=0

= dxµ(BX,x) ·A+ µ(x) · [B,A]

= {µ∗(A), µ∗(B)}(x)− µ∗([A,B])(x) = 0,

as µ∗ is a Lie algebra homomorphism, which completes the proof.

Remark 2.7. The moment map is not necessarily unique (see Example 2.9 below), although
for certain groups we will see that it is unique (cf. part (1) of Example 2.10 ). The existence of
a moment map can be characterised in terms of an extension of ω to a equivariant 2-form by
work of Atiyah and Bott; see §2.4 below.

2.3. Examples of moment maps. We start with some examples which highlight the connec-
tion between the moment map and classical mechanics.

Example 2.8.

(1) Consider the natural action of SO(3) on the sphere S2 := {x2 +y2 +z2 = 1} ⊂ R3, where
S2 has symplectic structure ω = dθ ∧ dz, for the cylindrical coordinates r, θ, z on R3.
We can identify so(3) ∼= R3 by sending the infinitesimal rotation at the standard basis
vector ej to ej . Then the moment map for this action is the inclusion S2 ↪→ R3 ∼= so(3)∗.
To see this, consider the S1-action on S2 given by rotation around the z-axis. Then, if
we identify T1S

1 ∼= R, the moment map is given by the projection (x, y, z)→ z, as

ι ∂
∂θ
ω = dz.
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We note that this map is S1-equivariant, as it is S1-invariant and the coadjoint action
of S1 is trivial. Similarly, one can verify that the S1-action given by rotation around
the x-axis (resp. y-axis) is the projection onto the corresponding axis.

(2) If one considers the lift of the natural action of SO(3) on R3 to its cotangent bundle
T ∗R3 ∼= R3 × R3 given by the diagonal action, then this action is symplectic for the
Liouville form ω on T ∗R3. Furthermore, the moment map µ : T ∗R3 → R3 is given by
the cross product µ(p, q) = p× q. If we view p as a position vector and q as a momentum
vector, then the cross product p× q gives the angular momentum about the origin.

The simplest example is actions on symplectic vector spaces given by representations.

Example 2.9. Let K = U(n) be the unitary group of n×n matrices and consider its standard
representation on Cn. The infinitesimal action is given by

AX,x =
d

dt
exp(tA) · x|t=0 = Ax

for x ∈ Cn and A a skew-Hermitian matrix in u(n). Let H : Cn ×Cn → C denote the standard
Hermitian inner product on Cn: if we write z ∈ Cn as a row vector (z1, . . . zn), then

H(z, v) = zvt = vzt = Tr(ztv) = Tr(vtz)

where vt denotes the transpose of a matrix. We take the symplectic form ω : Cn × Cn → R
equal given by the imaginary part of this Hermitian inner product:

ω(z, v) =
1

2i

(
H(z, v)−H(z, v)

)
=

1

2i
(H(z, v)−H(v, z)) .

The Hermitian inner product is U(n)-invariant (that is, H(Az,Av) = H(z, v) for all unitary
matrices A ∈ U(n)) and so it follows that the action of U(n) on (Cn, ω) is symplectic. In fact,
this action is Hamiltonian and there is a canonical choice of moment map µ : Cn → u(n)∗ which
is defined by

µ(z) ·A =
1

2
ω(Az, z) =

1

2i
H(Az, z)

for A ∈ u(n). The second equality follows from the fact that for A ∈ u(n):

(2) H(Az, v) +H(z,Av) = Tr(ztAtv) + Tr(ztAv) = Tr(zt(At +A)v) = Tr(0) = 0

for all z, v ∈ Cn and A ∈ u(n). We shall now carefully check that this is a moment map. First,
µ is U(n)-equivariant:

µ(k · z) ·A =
1

2
ω(Ak · z, k · z) =

1

2
ω(k−1Ak · z, ·z) = µ(z) · k−1Ak = Ad∗kµ(x) ·A

where A ∈ u(n), z ∈ Cn and k ∈ U(n). To verify the infinitesimal lifting condition (1), we may
identify TzCn ∼= Cn and then this condition becomes

dzµ(v) ·A = ω(Az, v)

for v ∈ Cn ∼= TzCn and A ∈ u(n). We have

dzµ(v) ·A :=
d

dt
µ(z + tv) ·A|t=0

=
1

2

d

dt
ω(A(z + tv), z + tv)|t=0 =

1

2
[ω(Az, v) + ω(Av, z)]

=
1

4i
[H(Az, v)−H(v,Az) +H(Av, z)−H(z,Av)]

=
1

2i
[H(Az, v)−H(v,Az)] =: ω(Az, v)

where the first equality on the final line follows from the relation given at (2).
The moment map for this symplectic action is not unique; although it is unique up to addition

by an element η of u(n)∗ which is fixed by the coadjoint action U(n)→ GL(u(n)) (we call such
η a central element). Every character of U(n) is a power of the determinant det : U(n) → S1,
whose derivative is given by the trace Tr : u(n)→ Lie S1 ∼= 2πiR. Hence, such a central element
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η of u(n)∗ must be equal to ciTr ∈ u(n)∗, for some constant c ∈ R, and we can use such an
element to define a shifted moment map

µη(z) ·A =
1

2i
H(Az, z) + η ·A.

Example 2.10. If K is a Lie group which acts on Cn by a faithful representation ρ : K → U(n),
then we can write down the moment map µK for the action of K on Cn using ρ and the moment
map µU(n) : Cn → u(n)∗ for the U(n)-action on Cn constructed in Example 2.9. The moment
map for the action of K is given by

µK = ρ∗µU(n)

where ρ∗ : u(n)∗ → k∗ is the dual to the inclusion ρ : k → u(n). We consider the following
special cases:

(1) If K = SU(n) acts on Cn by the standard inclusion into U(n), then its moment map is
given by

µ(z) ·A =
1

2
ω(Az, z) =

1

2i
H(Az, z)

for A ∈ su(n). However, there are no non-zero central elements of su(n) which we can
use to shift the moment map by and so this moment map is unique.

(2) If K = (S1)n acts on Cn via the representation

(t1, . . . , tn) 7→ diag(t1, . . . , tn),

then the moment map is given by

µ(z) · (A1, . . . , An) =
1

2
ω(diag(A1, . . . , An)z, z)

for Ak ∈ LieS1 ∼= 2πiR. If we write z = (z1, . . . , zn) ∈ Cn and Ak = 2iak for real
numbers ak then

µ(z) · (2ia1, . . . , 2ian) =
n∑
k=1

ak|zk|2.

As the group K = (S1)n is commutative, every element in central and so it follows that
all elements in k ∼= (2πiR)n are central. We can shift the standard moment map by any
n-tuple (c1, . . . , cn) of real numbers to get

µ(z) · (2ia1, . . . , 2ian) =

n∑
k=1

(ak|zk|2 + ck).

(3) We may also consider K = (S1)n acting on Cn via the representation

(t1, . . . , tn) 7→ diag(tr11 , . . . , t
rn
n )

for integers rk. In this case the moment map (shifted by real numbers ci) is given by

µ(z) · (2ia1, . . . , 2ian) =

n∑
k=1

(akrk|zk|2 + ck).

Exercise 2.11. Consider the action of K = U(m) on the space of l × m-matrices over the
complex numbers Ml×m(C) ∼= Clm given by k ·M = Mk−1 where we take the natural symplectic
structure given by the imaginary part of the standard Hermitian inner product on Clm. Then
if M ∈Ml×m and A ∈ u(m) show

µ(M) ·A =
i

2
Tr(MAM∗)

is a moment map for this action.
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So far the only examples of moment maps that we have seen are for affine spaces. A more
interesting example is complex projective space Pn with its Fubini–Study symplectic form ωFS

(or a smooth closed subvariety with the induced form). We consider a linear unitary action of
K on Pn (that is, K acts via a faithful representation K → U(n + 1)). In fact, the moment
map µK : Pn → k∗ for the K-action is the composition of the moment map µ : Pn → u(n+ 1)∗

for the U(n+ 1)-action followed by the projection u(n+ 1)∗ → k∗.

Example 2.12. Let U(n + 1) act on complex projective space Pn by acting on its affine cone
Cn+1 by its standard representation. The symplectic form on Pn is the Fubini-Study form
ωFS constructed from the standard Hermitian inner product H on Cn+1. It is easy to see this
from is U(n + 1)-invariant (that is, the action is symplectic). As the Fubini-Study form is
preserved by the action of U(n+1) and the unitary group is compact and connected, the action
is infinitesimally symplectic so that dιAXωFS = 0. Moreover, as H1(Pn) = 0, every closed 1-form
is exact and so the action is weakly Hamiltonian. It turns out that this action is Hamiltonian
and we can write down a moment map explicitly as follows. For p = (p0, . . . , pn) ∈ Cn+1−{0},
we claim that

µ([p]) ·A =
Trp∗Ap

2i||p||2
defines a moment map where [p] ∈ Pn and A ∈ u(n+ 1) and p∗ denotes the complex conjugate
transpose. We leave the U(n + 1)-equivariance of µ as an exercise for the reader to check. As
the action of U(n+ 1) on Pn is transitive, we need only verify the condition (1) at a single point
[p] = [1 : 0 : · · · : 0] ∈ Pn. We can identify T[p]Pn with the orthogonal space to p in Cn+1 with

respect to the standard Hermitian product on Cn+1:

T[p]Pn = TpS
2n+1/Tp(S

1 · p) ∼= {(0, z1, . . . , zn) ∈ Cn+1} ∼= Cn.

With respect to the coordinates (z1, . . . , zn) 7→ [1 : z1 : · · · : zn] at [p], the Fubini-Study form
can be expressed locally as

ωFS,[p] =
1

2i

n∑
k=1

dzk ∧ dzk;

that is, for v, w ∈ T[p]Pn, we have

ωFS,[p](v, w) = ImH(v, w) =
1

2i
[H(v, w)−H(w, v)].

Let v ∈ T[p]Pn and A ∈ u(n+ 1); then

d[p]µ(v) ·A :=
d

dt
µ(p+ tv) ·A|t=0 =

1

2i

d

dt

Tr((p+ tv)∗A(p+ tv))

||p+ tv||2
|t=0

=
1

2i

Tr(v∗Ap+ p∗Av)||p||2 − (pv∗ + vp∗)Tr(p∗Ap)

||p||4

(a)
=

1

2i
[H(Ap, v)−H(v,Ap)]

= ωFS,[p](Ap, v)

where (a) follows as H(p, v) = p∗v = 0 for v ∈ T[p]Pn.

Exercise 2.13. Let K be a compact and connected Lie group; then a coadjoint orbit O ⊂ k∗

for the action of K on k∗ has a symplectic form ω given by the Kostant-Kirillov symplectic
structure. Describe the infinitesimal action for the natural action of K on O and show that the
inclusion µ : O ↪→ k∗ is a moment map for this action.

2.4. Moment maps and infinitesimal linearisations. Given an action of a Lie group K on
a smooth manifold X, Cartan introduced a notion of K-equivariant forms which are K-invariant
polynomials on k with coefficients in Ω∗(X). More precisely, let

Ωl
K(X) :=

⊕
2i+j=l

(
Symi(k∗)⊗ Ωj(X)

)K
,
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where (Symi(k∗)⊗Ωj(X))K is the space of K-equivariant polynomial maps on k of homogeneous
degree i with coefficients in Ωj(X). There is an equivariant derivative

dK : Ωl
k(X)→ Ωl+1

K (X), (dK(β))(A) := (d− ιAX )(β(A)),

where A ∈ k and ιAX : Ωj(X) → Ωj−1(X) denotes the contraction with the vector field AX
given by the infinitesimal action of A.

Now suppose that K acts symplectically on (X,ω). Then Atiyah and Bott characterise
moment maps for the K-action on X as K-equivariantly closed extensions of the symplectic
form ω to Ω2

K(X) in the following way. Since we have

Ω2
K(X) = Ω2(X)K ⊕Hom(k,Ω0(X))K ∼= Ω2(X)K ⊕MapK(X, k∗),

any extension of ω ∈ Ω2(X)K to a K-equivariant 2-form is of the form ω+µ∗ for a K-equivariant
map µ : X → k∗. This extension is K-equivariantly closed if and only if

0 = dK(ω − µ∗)(A) = (dω,−ιAXω + dµA);

that is, if and only if µ is a moment map.
Given an Hermitian line bundle π : L→ X, the group U(1) acts on the associated unit circle

bundle π1 : L1 → X. Suppose that we have a U(1)-invariant connection 1-form θ on L1 with
curvature 2πiω ∈ Ω2(X) (that is, π∗1ω = −dθ to fix our sign conventions). Then any unitary
automorphism of L preserving θ descends to an automorphism of X preserving ω; that is, a
symplectomorphism of (X,ω). Furthermore, there is a short exact sequence

1→ U(1)→ Aut(L1, θ)→ Sympl(X,ω)→ 1.

The K-action on X determines a morphism K → Sympl(X,ω). A linearisation of the K-action
on X in the Hermitian line bundle L is a lift K → Aut(L1, θ) and an infinitesimal action is a

lift k→ Vect(L1)U(1) of the infinitesimal action k→ Vect(X). We claim that there is a bijection

{µ : X → k∗ moment maps} ←→ {φ : k→ Vect(L1)U(1) infinitesimal linearisations},

such that µA : X → R corresponds to φA := φ(A) ∈ Vect(L1)U(1) for A ∈ k. More precisely, if
l ∈ π−1

1 (x), then µA and φA are related by the formula

µA(x) = θl(φ
A
l ),

where θl ∈ T ∗l L1 and φAl ∈ TlL1. We can verify that map µ associated to an infinitesimal
linearisation φ gives an infinitesimal lift of the action:

π∗1dµ
A = d(θ(φA)) = dιφAθ = (LφA − ιφAd)θ = LφAθ + ιφAπ

∗
1ω = π∗1ιAXω,

where ιφAπ
∗
1 = π∗1ιAX as φ is a lift of the infinitesimal action. Hence, we can conclude that

dµA = ιAXω. The equivariance of µ follows from the fact that α is U(1)-invariant.

3. Symplectic quotients

Given a symplectic action of a Lie group K on a symplectic manifold (X,ω), we can ask
whether a quotient exists in the category of symplectic manifolds. The topological quotient
always exists, but it may not be a manifold; for example, if the action is not free or proper.
Even if the action is free and proper, the resulting quotient manifold may have odd dimension
and so will not admit a symplectic form. Hence, the topological quotient X/K does not in
general provide a suitable quotient in symplectic geometry.

In this section we define the symplectic reduction of a Hamiltonian action as a quotient of
a level set of the moment map. We explain that this symplectic reduction inherits a unique
symplectic form by a result of Marsden and Weinstein [5] and Meyer [5]. Finally, we prove that
the symplectic reduction satisfied a universal property amongst all symplectic quotients. For
further expository reading, see [2], [5] and [9].
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3.1. Properties of moment maps. Suppose K is a Lie group acting on a symplectic manifold
(X,ω). For x ∈ X, we let K · x denote the orbit of x and we let Kx denote the stabiliser of x.
We note that kx := {A ∈ k : AX,x = 0} is the Lie algebra of Kx.

If the action is Hamiltonian, then there is an associated moment map µ : X → k∗ and one
can naturally ask what other properties of the action are encoded by the moment map.

Lemma 3.1. Let K be a Lie group with a Hamiltonian action on a symplectic manifold (X,ω)
with associated moment map µ : X → k∗. For x ∈ X, we have

i) ker dxµ = (Tx(K · x))ωx := {ζ ∈ TxX : ωx(η, ζ) = 0 ∀ η ∈ Tx(K · x)};
ii) Im dxµ = Annkx := {η ∈ k∗ : η ·A = 0 ∀A ∈ kx}.

Proof. We first note that the tangent space Tx(K ·x) to the orbit is the image of the infinitesimal
action k→ TxX given by A 7→ AX,x and the kernel of this map is kx.

i) A tangent vector ζ ∈ TxX is in the kernel of dxµ if and only if for all A ∈ k we have

0 = dxµ(ζ) ·A = ωx(AX,x, ζ);

that is, if and only if ζ ∈ Tx(K · x)ωx := {ζ ∈ TxX : ωx(η, ζ) = 0 ∀η ∈ Tx(K · x)}.
ii) If η = dxµ(ζ) ∈ Im dxµ for some ζ ∈ TxX, then for all A ∈ k we have that

η ·A = dxµ(ζ) ·A = ωx(AX,x, ζ).

If A ∈ kx, then AX,x = 0 and, thus, η = dxµ(ζ) ∈ Annkx. Hence, we have an inclusion
Im dxµ ⊂ Annkx. We will prove these vector spaces coincide, by checking that they have the
same dimension. Let d := dimX and n := dim ker dxµ; then Im dxµ has dimension d− n. The
short exact sequence

0→ Annkx → k∗ → k∗x → 0

shows that
dim Annkx = dim k− dim kx = dimTx(K ·X).

Therefore, it suffices to prove that dimTx(K ·X) = d− n. For any subspace W ⊂ TxX, there
is a short exact sequence

0→Wωx → TxX →W ∗ → 0,

where the map TxX → W ∗ is given by ζ 7→ ωx(ζ,−)|W . In particular, dimW + dimWωx =
dimTxX = d. Applying this to Tx(K · x) and using Part i), we conclude that

dimTx(K · x) = d− dim(Tx(K · x))ωx = d− dim ker dxµ = d− n,
which completes the proof. �

We recall that the action of K on X is free if all stabilisers Kx are trivial. We say an action
is locally free at x if the stabiliser group Kx is finite, which is if and only if kx = 0.

Corollary 3.2. Suppose we have a Hamiltonian action of a Lie group K on a symplectic
manifold (X,ω) with associated moment map µ : X → k∗. Let η be an element in k∗ which is
fixed by the coadjoint action of K. Then:

i) The action is locally free at x ∈ X if and only if x is a regular point of µ.
ii) The K-action is locally free on µ−1(η) if and only if η is a regular value of µ.
iii) If η is a regular value of µ, then µ−1(η) ⊂ X is a closed submanifold of codimension equal

to the dimension of k, which is preserved by the K-action. Furthermore, Txµ
−1(η) =

ker dxµ for all x ∈ µ−1(η), and the vector spaces Txµ
−1(η) and Tx(K ·x) are orthogonal

with respect to the symplectic form ωx on TxX.

Proof. i) The stabiliser Kx of a point x is finite if and only if its Lie algebra kx = 0 is zero. By
Lemma 3.1 ii), we have that Im dxµ = Annkx which is equal to k∗ if and only if kx = 0. Hence,
the action is locally free at x if and only if dxµ is surjective (that is, x is a regular point of µ).
Then ii) follows from i) and the definition of regular value.

For iii), we use the preimage theorem for smooth manifolds: if µ : X → k∗ is a smooth map
of smooth manifolds, then the preimage of a regular value is a closed submanifold of dimension
dimX − dimk∗. Since η ∈ k∗ is fixed by the coadjoint action, equivariance of µ implies that
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the preimage µ−1(η) is preserved by the action of K. As µ|µ−1(η) = η is constant, dxµ = 0

on Txµ
−1(η) for all x ∈ µ−1(η). Hence, Txµ

−1(η) ⊂ kerdxµ. Since η is a regular value, dxµ is
surjective and so

dim ker dxµ = dimTxX − dim k∗ = dimX − dimk∗ = dimµ−1(η);

thus Txµ
−1(η) = kerdxµ. The final statement of iii) then follows from Lemma 3.1. �

3.2. Symplectic reduction. We suppose as above that we have a Hamiltonian action of a Lie
group K on a symplectic manifold (X,ω) with associated moment map µ : X → k∗. We want
to construct a quotient of the K-action on X (or a submanifold of X on which the action is
free) in the symplectic category.

Definition 3.3. For a coadjoint fixed point η ∈ k∗, we define the symplectic reduction of the
K-action on X at η to be the following topological quotient

X//red
η K := µ−1(η)/K.

This orbit space was considered by Marsden and Weinstein [4] and Meyer [6] as a possible
symplectic quotient. At the moment, this quotient is just a topological space: its topology is
the weakest topology for which the quotient map µ−1(η) → µ−1(η)/K is continuous. If η is
a regular value of µ, then the preimage µ−1(η) is a submanifold of X of dimension equal to
dimX − dim(K) and K acts on µ−1(η) with finite stabilisers by Corollary 3.2. However, the
action of K on µ−1(η) may not be free and so the symplectic reduction will be an orbifold
rather than a manifold. If η is a regular value and the action of K on µ−1(η) is free and proper,
then the symplectic reduction is a manifold of dimension dimX − 2 dimK by Theorem 1.3. In
this case, there is a natural symplectic form on µ−1(η)/K; this is a theorem of Marsden and
Weinstein [4] and Meyer [6] which we explain in the following section.

Remark 3.4. If η is a regular value of µ, but is not fixed by the coadjoint action, then we can
instead consider the symplectic reduction

µ−1(η)/Kη

where Kη = {k ∈ K : Ad∗kη = η} is the stabiliser group of η for the coadjoint action.

There is one point in the co-Lie algebra which is always fixed by the coadjoint action: the
origin 0 ∈ k∗. We refer to the symplectic reduction at zero simply as the symplectic reduction
and write

X//redK := µ−1(0)/K.

We will later see that it provides a universal symplectic quotient of the K-action.

3.3. Marsden-Weinstein-Meyer Theorem.

Theorem 3.5. Let K be a Lie group and suppose we have a Hamiltonian action of K on a
symplectic manifold (X,ω) with moment map µ : X → k∗. Let η ∈ k∗ be coadjoint fixed. If the
action of K on µ−1(η) is free and proper, then the following statements hold.

i) The symplectic reduction X//red
η K = µ−1(η)/K is a smooth manifold of dimension

dimX − 2 dimK. Furthermore, the quotient map π : µ−1(η)→ µ−1(η)/K is a principal
K-bundle.

ii) There is a unique symplectic form ωred on Xred
η such that π∗ωred = i∗ω where i :

µ−1(η) ↪→ X denotes the inclusion and π : µ−1(η)→ µ−1(η)/K is the quotient map.

Remark 3.6.

(1) The assumption that the action of K on µ−1(η) is free and proper is needed to prove
that the symplectic reduction is a manifold. As the action of K on µ−1(η) is free, it
follows that η is a regular value of the moment map.

(2) If η is a regular value, then the action is locally free and so the topological quotient is at
least an orbifold. If, moreover, K is compact, then the action on µ−1(η) is proper and
locally free. In the case, the symplectic reduction at η inherits an orbifold symplectic
structure, by an orbifold version of the above theorem.
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(3) More generally, there is a stratified symplectic structure on µ−1(η)/K defined by Sja-
maar and Lerman [7] such that each stratum is a smooth symplectic manifold and the
symplectic reduction µ−1(η)/K has a Poisson structure for which the strata are sym-
plectic leaves. The stratification is obtained by stratifying µ−1(η) by the conjugacy class
of the stabiliser group for the action.

Before we prove the above theorem, we need a few preliminary lemmas.

Lemma 3.7. With the assumptions of the above theorem, for all x ∈ µ−1(η), the subspace
Tx(K · x) of TxX is an isotropic subspace.

Proof. We recall that Tx(K ·x) is an isotropic subspace of the symplectic vector space (TxX,ωx)
if Tx(K ·x) ⊂ Tx(K ·x)ωx . The subspaces ker dxµ = Txµ

−1(η) and Tx(K ·x) of TxX are symplectic
orthogonal complements with respect to ωx for x ∈ µ−1(η) by Corollary 3.2. As η is fixed by
the coadjoint action, this implies µ−1(η) is K-invariant and so K · x ⊂ µ−1(η). Therefore

Tx(K · x) ⊂ Txµ−1(η) = Tx(K · x)ωx ,

which completes the proof that Tx(K · x) is an isotropic subspace of (TxX,ωx). �

Lemma 3.8. Let I be an isotropic subspace of a symplectic vector space (V, ω). Then ω induces
a unique symplectic form ω′ on the quotient Iω/I.

Proof. We define

ω′([v], [w]) := ω(v, w)

and check this definition is well defined:

ω′(v + i, w + j) = ω(v, w) + ω(i, w) + ω(v, j) + ω(i, j)

= ω(v, w) + 0 + 0 + 0

for i, j ∈ I. The non-degeneracy of ω′ follows from that of ω: if [u] ∈ Iω/I and ω′([u], [v]) = 0
for all v ∈ Iω/I, then ω(u, v) = 0 for all v ∈ Iω and so u ∈ (Iω)ω = I i.e. [u] = 0. �

Proof. (Marsden-Weinstein-Meyer Theorem) The preimage theorem shows that µ−1(η) is a
closed smooth submanifold of X of dimension dimX − dimK. Furthermore, as K acts on
µ−1(η) freely and properly, the quotient Y := µ−1(η)/K is a smooth manifold of dimension
dimX−2 dimK. We shall construct a non-degenerate 2-form ωred on Y such that π∗ωred = i∗ω,
by constructing symmetric forms ωred

p on TpY for all p ∈ Y . Let p = π(x) where π : µ−1(η)→
Y = µ−1(η)/K; then we have a short exact sequence of vector spaces

0→ Tx(K · x)→ Txµ
−1(η)→ TpY → 0.

By Lemma 3.7, the subspace Tx(K · x) is isotropic and has symplectic orthogonal complement
Tx(µ−1(η)). By Lemma 3.8, there is a canonical symplectic form ωred

p on

Tx(K · x)ωx/Tx(K · x) = Txµ
−1(η)/Tx(K · x) ∼= TpY.

By construction, this is a non-degenerate 2-form such that π∗ωred = i∗ω, and so it remains to
check that this symplectic form is closed. As the exterior derivative d commutes with pullback
we have that

π∗dωred = dπ∗ωred = di∗ω = i∗dω = 0.

The pullback map π∗ : Ω3(Xred
η )→ Ω3(µ−1(η)) is injective, as π is surjective, and so we conclude

that dωred = 0. �

Example 3.9. Consider the action of U(1) ∼= S1 on Cn by multiplication s · (a1, . . . , an) =
(sa1, . . . , san). We can take the standard symplectic form on Cn and use the Killing form on
u(1) to identify u(1)∗ ∼= u(1) ∼= R and write the moment map for this action as

µ(x1, . . . , xn) =

n∑
k=1

|xk|2.
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For η = 0, we have that µ−1(0) = {0} and µ−1(0)/K is just a point. The value η = 1 is more
interesting:

µ−1(1) = S2n−1 = {(x1, . . . , xn) :
∑
|xk|2 = 1}

and the symplectic reduction is Cn//redS1 = µ−1(1)/S1 = S2n−1/S1 = Pn−1. The symplectic
form ω induced from the standard symplectic form on Cn is the Fubini–Study form. In fact, if
one considers the construction of the Fubini–Study form using the standard form on Cn+1, then
one can now see that this is just a special case of the Marsden–Weinstein–Meyer Theorem.

Example 3.10. Consider the action of K = U(m) on the space of l × m-matrices over the
complex numbers Ml×m(C) ∼= Clm as in Example 2.11 where l > m. We recall that the moment
map is given by

µ(M) ·A =
i

2
Tr(MAM∗)

for M ∈Ml×m and A ∈ u(m). By using the Killing form on u(m), we can identify u(m)∗ ∼= u(m)
and view the moment map as a morphism µ : Ml×m → u(m) given by

µ(M) =
i

2
M∗M.

Let η = iIm/2 denote the skew-Hermitian matrix which is an (imaginary) scalar multiple of the
identity matrix Im; then clearly η is fixed by the adjoint action of U(m) on u(m). The preimage
µ−1(η) = {M ∈ Ml×m : M∗M = Im} consists of l ×m matrices whose m columns are linearly
independent and define a length m unitary frame of Cl. The symplectic reduction µ−1(η)/U(m)
is the grassmannian Gr(m, l) of m-planes in Cl.

There is a more general version of the Marsden-Weinstein-Meyer Theorem which allows us
to take reductions at points which are not fixed by the coadjoint action:

Proposition 3.11. Given a Hamiltonian action of a compact connected Lie group K on a
symplectic manifold (X,ω) with moment map µ : X → k∗ and an orbit O for the coadjoint
action of K on k∗. If the orbit consists of regular values of µ and the action of K on µ−1(O) is
free and proper, then the symplectic reduction µ−1(O)/K is a symplectic manifold of dimension
dimX + dimO − 2 dimK.

Proof. The assumption that every point of O is a regular value of the moment map means that
the preimage µ−1(O) is a closed submanifold of X of dimension dimX + dimO − dimK. The
coadjoint orbit O has a natural symplectic form, which we denote by ωO, given by the Kostant-
Kirillov symplectic structure. Consider the natural action of K on the product (X×O,−ω�ωO),
for which the moment map µ′ : X ×O → k∗ is given by

µ′(x, η) = −µ(x) + η.

Then the proposition follows by applying the original version of the Marsden-Weinstein-Meyer
Theorem to the regular value 0 of µ′ and observing that µ−1(O) ∼= (µ′)−1(0). �

Remark 3.12. If η ∈ k∗ is not fixed by the coadjoint action of K on k∗, then

Kη = {k ∈ K : Ad∗kη = η}
acts on µ−1(η). Then the symplectic reduction µ−1(Oη)/K constructed above for the coadjoint
orbit Oη of η is homeomorphic to the quotient µ−1(η)/Kη.

Remark 3.13. Suppose X is a Kähler manifold (i.e. it has a complex structure I and a
Riemannian metric g such that ω := g(I−,−) is a symplectic form) and the action of the Lie
group K preserves this structure (since the metric g, complex structure I and symplectic form
ω are compatible, it suffices to check that K preserves three out of the two structures). If the
action is Hamiltonian with moment map µ and K acts freely and properly on µ−1(0) where 0 is
a regular value of the moment map, then the symplectic reduction µ−1(0)/X also has a Kähler
structure (i.e. the almost complex structure induced on the symplectic reduction is integrable
and and the metric also induces a compatible kähler metric on the symplectic reduction).
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3.4. Symplectic Implosion. Let K be a compact Lie group with a Hamiltonian action on a
symplectic manifold (X,ω) with moment map µ : X → k∗. The idea of a symplectic implosion
for this action is to construct a stratified symplectic space with an action of a maximal torus of
K, such that the symplectic reductions of K acting on X at different values η can be recovered
as symplectic reductions of this maximal torus acting on the symplectic implosion. In this sense,
it provides an abelianisation of the process of symplectic reduction.

Definition 3.14. Fix a maximal torus T ⊂ K and positive Weyl chamber t∗+. The symplectic
implosion Ximpl of X with respect to t∗+ is a stratified symplectic space with a Hamiltonian

action of T on Ximpl and moment map µimpl : Ximpl → t∗ such that for each η ∈ t∗+, we have a
(stratified) symplectomorphism

µ−1
impl(η)/T ∼= µ−1(η)/Kη.

The construction of symplectic implosions is due to Guillemin, Jeffrey and Sjamaar [3]. The
strata of Ximpl are indexed by the faces σ of t∗+. More precisely, we have

Ximpl =
⊔
σ

µ−1(σ)/[Kσ,Kσ],

where σ runs over the faces of t∗+, and Kσ denotes the stabiliser of the face σ.
Alternatively, one can construct Ximpl by gluing points in µ−1(t∗+), where x ∼ y if and only if

µ(x) = µ(y) = η and x = ky for some k ∈ [Kη,Kη]. From this second description, we see there
is a T -action on µ−1(t∗+), which descends to Ximpl = µ−1(t∗+)/ ∼, as T normalises [Kη,Kη].
The moment map µ : X → k∗ induces the moment map µimpl : Ximpl → t∗, in the sense that
µimpl ◦ π = µ|µ−1(t∗+), where π : µ−1(t∗+)→ Ximpl is the quotient map obtained by gluing.

Theorem 3.15. (Guillemin, Jeffrey, Sjamaar [3]) The stratified symplectic space Ximpl is a
symplectic implosion of the K-action on X with respect to t∗+.

A third method for constructing the symplectic implosion is to use the universal symplectic
implosion for K: namely consider K acting on its cotangent bundle T ∗K; then Guillemin,
Jeffrey and Sjamaar [3] prove there is an isomorphism of stratified Hamiltonian T -spaces:

Ximpl
∼= (X × (T ∗K)impl)//

redK.

3.5. Lagrangian Correspondences. We recall that a symplectomorphism f : (M,ω) →
(M ′, ω′) of symplectic manifolds is a diffeomorphism f : M → M ′ such that f∗ω′ = ω. Since
this definition is rather restrictive, one has a more general notion of morphisms in the symplectic
category given by Lagrangian correspondences.

Definition 3.16.

(1) A submanifold L of a symplectic manifold X is Lagrangian if 2 dimL = dimX and
i∗ω = 0 where i : L ↪→ X is the inclusion. Equivalently, L is Lagrangian if for all x ∈ L
the vector space TxL is a Lagrangian subspace of TxX; that is,

(TxL)ωx = {η ∈ TxX : ωx(η, ζ) = 0 ∀ ζ ∈ TxL} = TxL.

(2) A Lagrangian correspondence between symplectic manifolds (X1, ω1) and (X2, ω2) is a
Lagrangian submanifold L12 of (X1 ×X2,−ω1 � ω2) where −ω1 � ω2 := −π∗1ω1 + π∗2ω.

Remark 3.17. For any symplectomorphism φ : (X1, ω1)→ (X2, ω2), the graph Γ(φ) ⊂ (X1 ×
X2,−ω1�ω2) is a Lagrangian submanifold. Therefore, the notion of symplectic correspondence
generalises that of symplectomorphisms.

We want to view Lagrangian correspondences as morphisms in the symplectic category. For
this, we need to define the composition of two Lagrangian correspondence. Given Lagrangian
submanifolds L12 ⊂ (X1 × X2,−ω1 � ω2) and L23 ⊂ (X2 × X3,−ω2 � ω3), we define the
composition L13 = L23 ◦ L12 to be the Lagrangian submanifold L13 := π13(L12 ×X2 L23) of
(X1 ×X3,−ω1 � ω3) given by

L13 = {(x1, x3) ∈ X1 ×X3 : ∃x2 ∈ X2 such that (x1, x2) ∈ L12 and (x2, x3) ∈ L23}.
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Then, following [8], we define morphisms in the symplectic category to consist of chains of
symplectic correspondences.

3.6. Universality of the symplectic reduction. Given a Hamiltonian action of a Lie group
K on a symplectic manifold (X,ω) with moment map µ : X → k∗, the aim of this section is
to show (under the assumptions of the Marsden-Weinstein-Meyer theorem) that the symplectic
reduction (µ−1(0)/K, ωred) is a universal quotient of the K-action on (X,ω) in the symplectic
category. We recall that the symplectic form ωred is the unique symplectic form such that
π∗ωred = i∗ω where i : µ−1(0) ↪→ X denotes the inclusion and π : µ−1(0)→ µ−1(0)/K denotes
the quotient map. First of all we need to construct a Lagrangian correspondence between (X,ω)
and the symplectic reduction (µ−1(0)/K, ωred).

Lemma 3.18. If the assumptions of the Marsden-Weinstein-Meyer Theorem hold for η = 0,
then

Lµ := Im
(
i× π : µ−1(0)→ X × µ−1(0)/K

)
is a Lagrangian submanifold of (X × µ−1(0)/K,−ω � ωred).

Proof. As Lµ is diffeomorphic to µ−1(0) we have

dimLµ = dimX − dimK =
1

2
dim

(
X × µ−1(0)/K

)
.

If j : Lµ ↪→ X × µ−1(0)/K, then j∗(−ω � ωred) ≡ 0 if and only if −i∗ω + π∗ωred ≡ 0 which
holds by the Marsden-Weinstein-Meyer theorem. �

In particular, this lemma gives a morphism in the symplectic category (X,ω) and the re-
duction (µ−1(0)/K, ωred). However, we want this morphism to be K-equivariant and so we
should define what it means for a Lagrangian correspondence to be K-invariant (or in fact more
generally K-equivariant):

Definition 3.19.

(1) A K-equivariant Lagrangian correspondence between symplectic manifolds (xi, ωi) for
i = 1, 2 with Hamiltonian K-actions is a Lagrangian submanifold L ⊂ (X1×X2,−ω1 �
ω2) which is K-invariant and satisfies µ12(L) = 0, where µ12 denotes the moment map
for the K-action on (X1 ×X2,−ω1 � ω2).

(2) A K-invariant Lagrangian correspondence between a symplectic manifold (X1, ω1) with
Hamiltonian K-action and a symplectic manifold (X2, ω2) is a K-equivariant Lagrangian
correspondence, where we give (X2, ω2) the trivial K-action.

The proof of the following lemma is immediate by definition of Lµ.

Lemma 3.20. If the assumptions of the Marsden-Weinstein-Meyer Theorem hold for η = 0,
then the Lagrangian correspondence Lµ is K-invariant.

Proposition 3.21. Let K be a Lie group with a Hamiltonian action on a symplectic manifold
(X,ω) with moment map µ : X → k∗. If K acts freely and properly on µ−1(0), then Lµ is
a universal K-invariant symplectic correspondence from (X,ω); in the sense that every other
K-invariant Lagrangian correspondence from (X,ω) to a symplectic manifold (Y, ω′) factors
through Lµ.

Proof. It suffices to prove the result when the morphism from (X,ω) to (Y, ω′) is given by a single
K-invariant Lagrangian correspondence i.e. a Lagrangian submanifold L′ ⊂ (X × Y,−ω � ω′)
which is preserved by the action of K and on which µXY : X×Y → k∗ is zero. As the K-action
on Y is trivial, so is the moment map µY and so µXY is the projection X × Y → X followed
by µ = µX : X → k∗. In particular, L′ ⊂ µ−1(0) × Y as µXY (L′) = 0, by assumption that
L′ is K-invariant. To show that L′ factors through Lµ, it suffices to produce a Lagrangian
correspondence L′′ between µ−1(0)/K and Y such that L′ = L′′ ◦ Lµ. One checks that L′′ :=
L′/K ⊂ µ−1(0)/K × Y is the required Lagrangian submanifold. �
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